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THE GROUP VELOCITY OF SOME NUMERICAL SCHEMES 
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SUMMARY 
The performances of various numerical schemes used to model hyperbolic/parabolic equations have been 
studied by the calculation of their numerical group velocities. Numerical experiments conducted with one 
dimensional linear and quadratic Lagrangian finite elements with a Crank-Nicolson finite differencing in 
time confirm the results of the analysis. The group velocity analysis supplements the well-known amplitude 
and phase portraits introduced by Leendertse' and helps explain the occurrence and behaviour of numerical 
oscillations in both finite difference and finite element schemes. 
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INTRODUCTION 

It is well known that the accuracy of numerical schemes cannot be gauged simply by a truncation 
error analysis. Indeed, numerical schemes with the same order of accuracy can have widely 
different behaviours. Von Neumann used a Fourier analysis to investigate the linear stability of a 
numerical scheme. Leendertse' used a Fourier analysis to estimate the accuracy of numerical 
schemes with regard to amplitude and phase speed errors. Sobey' carried out similar analyses on 
four well tried and proven finite difference schemes. The present work is concerned with the 
accuracy and behaviour of numerical schemes used in tidal modelling and attempts to explain 
errors found in them by introducing a Fourier analysis based on the concept of group velocity. 

SHALLOW WATER EQUATIONS AND THE TRANSPORT EQUATION 

The one-dimensional equations describing tidal motion in estuaries can be written as follows: 

au au aul u ~ u ~  -+ u-+g-+g-=O 
at ax ax c;h 

all a 
at ax - + -(hu) = 0 

where u is a cross-sectionally averaged velocity; C, is the Chezy coefficient (rn '''/s); h = h, + q is the 
cross-sectionally averaged flow depth relative to mean water level; q is the water surface elevation 
measured from mean water level and h, is the mean water depth. Both equations (1) and (2) reduce 
to the transport equation ( 3 )  when the mean water depth is constant and the non-linear terms 
neglected. 

au au 
at ax - + c-- = 0 (3) 
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where 
c = d(gh,) and u = cy/h, 

The general solution of equation (3) can be represented by the Fourier series. 

(4) = f 0 e i ( W m t + g m x )  
m 

m =  -a, 

where 0, is a constant amplitude of the mth component; om is the angular frequency of the mth 
component and (T, is the mth wave number component. 

Equation (4) describes the physical continuum by an infinite series of progressive waves whose 
phase and group velocities are identical. This can be shown by considering one component of the 
wave spectrum, that is, 

(5)  = Oei(u>r + ax) 

= u(t)eiax 

where u(t) is the wave amplitude at time t and subscript m has been dropped for convenience. 

by substituting equation (5 )  into equation (3), that is 
The phase velocity of the wave (C,) is found from the dispersion relationship for the continuum 

C, = o / o  
- - --c 

The group velocity, which represents the speed at  which the energy of the spectrum is 
transmitted, is found by differentiating equation (6), that is, 

ace 
C,=- 

a(T 
(7) 

- - - - c  

Thus, the analytical solution to equation (3) is non-dispersive since all wavelengths propagate at 
the same phase speed which, in this case, is the same as the group velocity. 

FOURIER SERIES ANALYSIS OF A FINITE ELEMENT SOLUTION 

Numerical solutions of equation (3) and, by implication, equations (1) and (2), will experience 
problems when attempting to model the physical continuum. Clearly, numerical schemes can only 
reproduce a finite number of wave components; the spectrum being truncated for wavelengths less 
than or equal to 26x. The implication is that the numerical spectrum will segregate since both the 
wave speed and the rate of energy transfer of the numerical waves are different from those of the 
continuum waves, thereby leading to numerical oscillations. 

The dispersive nature of the numerical spectrum can be seen by writing equation (3) in discrete 
form. Using linear finite elements or, more specifically, a Galerkin finite element method with linear 
shape functions in space and an implicit finite difference technique in time, yields the following 
numerical analogue of equation (3): 
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wherej, y1 are the spatial and temporal grid counters in increments of A x  and Az, respectively. 0 is a 
time weighting factor (6 = 4 corresponds to a Crank-Nicolson scheme; 0 = 2/3 corresponds to 
linear shape functions in both space and time; 8 = 1 corresponds to a fully-implicit scheme). 

Considering only a single numerical Fourier wave component leads to the dispersion 
relationship by substitution of equation (5) into equation (8), that is 

sin (oAx) 

cos ((TAX) + 2 - 
tan (v) = (9) 

where onurn is the angular frequency of the numerical scheme, which is in general complex, but for 
space and time centred schemes, such as considered here, is real. 

Comparison of equations (6) and (9) shows that the numerical system is frequency dispersive, and 
that the dispersion relation only approaches that of the continuum as Ax, At -+ 0. It is this 
frequency dispersive property of numerical schemes which is the main theme of the present paper. 

COMPLEX PROPAGATION FACTOR, ETGENVALUES, AMPLITUDE RATIO 
AND VELOCITY RATIO 

In this section, relationships are established between the various traditional parameters such as 
propagation factor, amplitude and phase velocity ratios, in terms of both the angular frequency 
and the eigenvalue. These three factors are often used to assess the accuracy of numerical schemes. 

The real and imaginary parts of the angular frequencies will be represented as follows: 

discrete system on,, = Q,,, + iv,,, (10) 

continuum w = Q + i v  ( 1  1) 

In particular, for equation (3), v = 0; Qnum is related to the ever-present dispersion in a numerical 
scheme, whereas v,,, pertains to the dissipation or attenuation which may or may not be present in 
a numerical scheme. 

The (complex) eigenvalue A,,, is the ratio of the amplitude of the computed solution at 
successive time levels, separated by At. The eigenvalue is often relatively accessible and is a 
convenient parameter when assessing numerical schemes. From equations (5) and (LO) 

Similarly for the analytical case, we can define 

In 1967, Leendertse‘ introduced the now well-known method of assessing the accuracy of a 
numerical solution to finite difference (or finite element) equations, relative to the analytical 
solution of the partial differential equations. He defined the complex propagation factor (PF) as the 
ratio of the numerical wave to the analytical wave after the time taken for the analytical wave to 
traverse one wavelength L, i.e. 

ei(w,,,T + oL) 
P F  = e i ( o r  + nL) (14) 

where T= analytical wave period = 2742. Substitution of equations (10) to (13) into equation (14) 
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then yields 

= 1 PFI exp (i arg(PF)) (15) 

where Im( ) and Re( ) stand for the imaginary and real parts. 
The amplitude ratio ( P )  equals the amplitude of the computed wave after time T divided by the 

amplitude of the analytical wave after the same time and equals the modulus of the propagation 
factor. Thus from equation (1 5) 

The velocity ratio (Q) equals the (real) speed of propagation of the computed wave divided by the 
(real) speed of propagation of the analytical wave and is related to the argument of the propagation 
factor. Whenever the angular frequencies w or w,,, are complex, it is necessary to take the real 
part. Thus from equation (1 5), we have 

Thus the parameters A,,,, P and Q are used to assess and characterize the stability and 
behaviour of a numerical scheme. In particular, we note from equation (12) that a scheme is 
neutrally stable if 1 A,,,/ = 1; that is if v,,, = 0; stable and dissipative if IA,,,/ d 1, that is v,,, > 0; 
unstable if IA,,,/ > 1, which implies v,,, < 0. 

With regard to the propagation factor, it is evident from equation (15) that a numerical scheme 
has a unit amplitude ratio if vnum = v. More specifically, for space centred schemes, v,,, = 0 
whenever v = 0 and this means that P = 1, implying that there are no amplitude errors for any 
wavelength. 

Unlike the amplitude ratio, the phase velocity ratio is not normally unity for all wavelengths. 
Equation (17) indicates whether the phase errors are lagging or leading depending on the sign of 
arg (PF). This equation also indicates that a wavelength with a real eigenvalue has a zero phase 
velocity in the numerical scheme. 

GROUP VELOCITY RATIO 

It is the intention of this paper to show that the behaviour of a numerical scheme, which is 
traditionally characterized by the amplitude and phase portraits, can be supplemented by a group 
velocity portrait. 

In 1976, Grotjahn and O'Brien3 compared the group velocity ratios for the explicit leap-frog and 



THE GROUP VELOCITY OF SOME NUMERICAL SCHEMES 205 

the implicit Crank-Nicolson finite difference operators applied to equation ( 3 )  at Courant 
numbers of0.5,099 and also 10 for the implicit scheme. They showed that for wavelengths less than 
4Ax, the numerical group velocity was in fact negative. They also compared the group velocities of 
the 2nd and 4th order leap-frog finite difference schemes. Their work has been extended in the 
present paper and the expressions for the numerical group velocity will now be derived for the l-D 
linearized finite-amplitude shallow water equations which here include the convective acceler- 
ation, friction and diffusion terms. 

In order to produce the group velocity portraits, it is necessary to linearize equations (1) and (2) 
and introduce a horizontal momentum transfer term which is often included in numerical models 
to control numerical stability. These equations then take the form 

aq au aq 
-+h,-+u,-=o ax 
at ax 

where U ,  is a constant, unperturbed velocity, k = gI U,l/(C,2h,), D, is a horizontal momentum 
transfer coefficient and it is assumed that dq/ax >> &,/ax. 

Continuum group velocity 

Substitution of 

and 

into equations (18) and (19) yields 

i(o + o~, ) i j  + iolZoO = o 
iog4 + [i(o + oU,) + k + 02D,]0  = 0 

(22) 

(23) 
For non-trivial 0, 4, the solution of equations (22) and (23) yields the dispersion relation for the 
continuum, that is 

where w', w- are the angular velocities corresponding to waves propagating in the + x, - x 
directions, respectively. 

Differentiating equation (24) with respect to o yields the continuum group velocity 

It is convenient for future analysis to work in terms of dimensionless numbers, and therefore the 
following parameters are introduced: 

cAt 
Ax c=- (Courant number) (264 
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U 
F = o  (Froude number) (26b) 

D=---- (diffusion number) (264 

K = kAt (friction number) (264 

wavenumber) (264 

C 

D,At 
Ax2 

y = CJAX (dimensionless 

271 
N X  

- __ -- 

N x  = L/Ax (dimensionless wavelength) Wf) 
Substituting equations (26) into equations (24) and (25) and taking the real parts, gives the 

results: 

Re(w+ At) = yC { - [F f J[ I - ( v-)2] 1 

The real parts were taken above since this is the physical quantity of interest when finding the phase 
and group velocities. It needs to be added that when K or D are non-zero, the system is non- 
conservative and the concept of group velocity loses it utility as energy losses become more 
significant. A wave system has two aspects, namely kinematic and dynamic. The group velocity is a 
kinematic concept. Broer4 has shown that in linear conservative systems, these two velocities are 
equal. In non-conservative systems they are of less value and in non-linear systems there can be 
more than one group velocity. Whitham' has shown that for finite amplitude waves, the linear 
group velocity splits into two amplitude dependent group velocities. Therefore, in the work that 
follows the conclusions reached should only be applied to the case of K = D = IF = 0 with the 
additional requirement that I i,,,,l= 1 in the discrete system. Nevertheless, the effect of non-zero K, 
D, IF, and j A,,, 1 f 1 will be investigated so that indicators can be given on the behaviour of non- 
conservative systems. If K = D = 0, equations (27) and (28) show that the continuum system is non- 
dispersive in terms of both energy and amplitude. 

Numerical group velocity 

In general, the eigenvalue (or amplification factor) of a numerical scheme is more accessible than 
w,,, and so the expression for the numerical group velocity (CgnUm) is derived in terms of the 
eigenvalue. From equation (9) we can find the inverse expression with on,, in terms of A,,,, that is 

Im(&urn) [ Re(Anum) ~ - In q,,,At =tan- '  

Since only the real part of the numerical group velocity is of physical interest, only the real part of 
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equation (29 )  is wanted. 

Re(onu,At) = tan- ’ 
Differentiating equation (30) with respect to (T and incorporating equation (26) produces the 
following result: 

In the special cases of those numerical schemes with /Anum\  = 1, equation (31) simplifies to 

(32 )  
-Y a Re(Cgnu,,,oAt) = - CRe(LmJl 

1m(4wrn) 
We now introduce the group velocity ratio, R = (group velocity of the computed wave)/(group 
velocity of the continuum wave) where it is understood that we are only dealing with the real parts. 
Using equation (31),  R becomes 

and if lLnurnl = 1, equation (33 )  simplifies to 

Thus for any particular numerical scheme applied to the shallow water equations or the transport 
equation, an expression for the eigenvalue(s) together with equation (28 )  will define the group 
velocity ratio. Equations (33 )  or (34 )  thus enable the group velocity ratio ( R )  to be deduced. 

Linear finite element scheme 

functions yields the following equations after integrating the diffusion term by parts: 
Application of the Galerkin finite element technique to equations (18) and (19) with linear shape 

u j + l  - 2 u j + u j - 1  
- (1 - $)Do ( Ax2 

(35 )  
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Substitution of equations (20), (21) and (26) into equations (35) and (36) and elimination of 0 and +j 
gives an expression for A,,, as follows: 

(37) 
K - + 8E2 + i[LFE(1+ 28K) J. J ( E 2  - K’)] { 1 + 28K -(BFE)’ + (QE)2 + 2iBIFE(l + OK) 

a t  = I -  ___ 

Where 
cosy - 1 

2 cosy+2 
K=--3D(  K ) 

and 
3C sin y 

cosy+2 
E =  

The numerical group velocity ratio for the linear finite element scheme is then found by applying 
equation (33). These calculations are long but trivial and will not be repeated here-but they do 
permit one to examine the effects of variations in C, 8, IF, K and D on the group velocity. Typical 
results showing the effect of Courant number, time centring and Froude number are shown in 
Figures 1 to 3 where R is plotted against the dimensionless wavelength, N,. 

The most striking point about Figure 1 is that for 2A.x wavelengths, the numerical group velocity 
is not only in the opposite direction to that which it should be, but is also three times too fast. 
Negative group velocities can be a reality and have been reported in connection with waves in a 
rotating fluid-but here they only go to show the poor performance of the finite element scheme 
in modelling the group velocity of 2Ax wavelengths. It is also noteworthy that the 3Ax wavelengths 
have a zero group velocity and that the numerical group velocity only matches the analytical group 
velocity with any degree of success for the longer waves. Clearly, the wavelength at which better 
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Figure 1. Group velocity portraits of the Crank-Nicolson linear finite element scheme applied to the shallow water 
equations: effect of Courant number 
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Figure 2. Group and phase velocity portraits of the linear finite element scheme applied to the shallow water equations: 
effect of time centring 
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performance is achieved is very dependent upon the value of the Courant number. The higher the 
Courant number, the less satisfactory is the performance of the linear elements with regard to both 
the group and phase velocities. 

Figure 2 shows that the group velocity, like the phase velocity, is little influenced by variations in 
the time centring ($), especially for the longer waves. Figure 3 shows that a non-zero Froude 
number introduces anisotropy into the numerical system as the behaviours of the upstream and 
downstream travelling waves diverge. Relative to the continuum wave, the numerical group 
velocity of a downstream travelling wave is slower than that for an upstream travelling wave for 
wavelengths greater than 3Ax. The situation is reversed for wavelengths less than 3Ax. For the 
phase velocity, however, the numerical phase velocity of a wave heading downstream relative 
to the corresponding continuum wave is less than that for a wave moving upstream at all 
wavelengths. 

THE NUMERICAL PHASE VELOCITY AND GROUP VELOCITY 
PUT INTO PERSPECTIVE 

The special case of Crank-Nicolson (i.e. 0 = f) finite elements with K = IF = D = 0 will now be 
examined. Under these conditions, the expressions obtained for &,,, P, Q and R which relate to 
equations (1) and (2) are the same as those obtained for equation (3). Consequently, in this section, 
the discussion and numerical experiments which follow are made in the context of modelling the 
transport equation (3)  by its linear finite element analogue, equation (8). 
Equation (37) can thus be simplified to 

1 f i(E/2) 
1 -I- i(E/2) 

2" =I 

where the + / - correspond to waves travelling downstream/upstream, respectively. 
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Equation (1 6 )  gives 

and equation (1 7) gives 
P = l  

2 tan-' [-----I -$C sin y 

cosy + 2 
YC Q =  

21 1 

(39) 
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X 

Figure 5.  Schematics for the evolution ofa wave packet, comprised of various wavelengths (L/Ax = 2,3,30)  for the Crank- 
Nicolson finite element scheme at Courant number C = I (dashed sections denote newly-emerging waves) 
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Since ~,?,,um~ = 1 application of equation (34) results in 

3( 1 + 2 cos y) 
(cos y + 212 + ($C sin y ) 2  

R =  

Thus for these conditions, the Crank-Nicolson linear finite element scheme has no amplitude 
errors (see equation (39)) but it does have errors in both the phase velocity (equation (40)) and the 
group velocity (equation (41)). Figure 4 shows results for a Courant number equal to 1 and 8 = f. 

It can be seen that at L=2Ax, the individual waves are stationary, but the group moves 
backward at a speed of - 3 J(yh,). The situation is depicted in Figure 5(a) which shows that as the 
group moves backwards at  a rate of 3 times the shallow water wave speed, new waves form at the 
upstream edge of the wave group while existing waves at  the downstream edge of the wave group 
disappear. For comparison, the continuum situation is depicted by the single characteristic line 
which emanates from the origin. 

A t  L= 3Ax, the individual waves within a stationary wave group propagate forward at a velocity 
of about 68 per cent of the continuum speed (0-68 J(gh,)). This is represented in Figure 5(b) where 
the vertical band corresponds to the stationary wave group. The sloping characteristics within the 
band represent the progress of the individual waves. 

At L= 30Ax, the individual waves propagate forward at almost the correct speed (99.6 per cent) 
while the wave group moves forward at a marginally slower rate (98.9 per cent)-see Figure 5(c). 

In the continuum case, both the individual waves and the wave group propagate forward at 
,/(yh,) for all wavelengths. 

NUMERICAL EXPERIMENTS 

The behaviour of the Crank-Nicolson linear finite element scheme, as predicted by the analysis, is 
quite surprising and so a number of numerical experiments were conducted to check their validity. 

The experiments were performed by first synthesizing a wave group of about 10 waves with 
constant amplitude and wavelength (2Ax). Outside the wave group, the dependent variable was set 
to zero, thereby completing the specification of the initial conditions. The experiments were then 
repeated for 4Ax and 8Ax wavelengths and at several values of Courant number. 

In order to keep the experiments as simple as possible and facilitate the interpretation, the 
Crank-Nicolson linear finite element version of equation (3), was used rather than equations (18) 
and (19). This meant that there was only one characteristic in the system, (instead of two) which 
represented the propagation of disturbances in the + x direction or from left to right in Figures 6-9. 

Figure 6 shows how a wave group consisting of 2Ax waves evolved with time at a Courant 
number equal to 1. The location of the wave packet is predicted quite well by the analysis, is well 
outside the continuum location for that wave packet and its shape seems to be approaching that of 
a Gaussian wave packet. The initial profile is not one of constant form. Since in a dispersive system, 
only monochromatic waves can have constant form, a Fourier decomposition of the initial 
conditions in Figure 6 would show that wavelengths other than 2Ax waves were present at the start 
of the experiments. 

A similar degree of fit between the analysis and experiment was also found for the 4Ax (not 
shown) and 8Ax waves. In the latter case, however, the behaviour of the numerical scheme was 
found to approach that of the theory so that the continuum and discrete system locations of the 
wave packet are closer than for the shorter wavelength cases, see Figure 7. 

The experiments were repeated at Courant numbers of 1/5 and 5. The results for C = 1/5 were 
quite similar to those at C = 1, discussed above, but at  C = 5, the results took on a more qualitative 
nature as shown in Figure 8 for 2Ax waves. The wave packet is seen to be longer than that at the 
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Figure 6. Time evolution of a wave packet made up of waves of wavelength L= 2Ax 
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Figure 7 .  Time evolution of a wave packet made u p  of waves of wavelength L= 8Ax 
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Figure 8. Time evolution of a wave packet made up of waves of wavelength t= 2Ax 
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Figure 9. Time evolution of a composite wave packet made up of 2Ax, 4Ax and 8Ax waves 
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lower Courant number of 1 and seems to have broken down into two wave packets, a phenomenon 
that was also noticed in some later tests. Even after only two time steps, the wave packet is longer at 
G = 5 because of the greater amount of dispersion present at higher Courant numbers. The 
centroid of the larger wave packet is also seen to be only just contained between the predicted limits 
of the wave group. Thus the group velocity predicted by the analysis at C = 5 for L= 2Ax waves 
seems to be underestimated. 

Finally, one more experiment was carried out consisting of a composite initial wave packet at 
G = 1. This consisted contiguously of 2Ax, 4Ax, and 8Ax waves from the upstream and downstream 
ends as shown in Figure 9. The analysis predicted that the 2Ax wave portion would move to the left 
at a speed of - 3J(gh,), the 4Ax portion would move to the right at 0.480J(gh0) and the 8Ax 
portion would move to the right at 0989J(gh,). 

The results show (Figure 9) that after 50 time steps the 2Ax portion has a main wave packet 
followed by a series of 9 progressively smaller ones. Next comes a long low amplitude wave packet 
where the waves are between 2Ax and 4Ax. The next two wave packets are larger and easily 
discernible as the 4Ax and SAX contributions. Similar results were found for a composite wave 
packet composed of 4Ax waves on the upstream side, followed by 2Ax waves on the downstream 
side,6 although in this case the two wave groups passed through each other. This last test highlights 
the very different behaviour of the numerical scheme at the various wavelengths and shows that the 
linear group velocity analysis provides a good first order representation of the behaviour of the 
numerical solution. 

Quadratic elements 

Each quadratic element in the one dimensional Lagrange family has two end nodes and one 
midside node. Applying the Galerkin process with the quadratic shape functions and the same time 
differencing as was used for the earlier linear element tests, we obtain two equations when 
modelling the transport equation (3). The end nodes and mid-side nodes have different 
connectivities and are therefore approximated differently, giving rise to two equations types: one 
for a typical end node and the other for a typical midside node. 

For an end node at jAx, equation (3) becomes 

u jp2 -4u j -1  +4uj+, 
4Ax + (1 - 0)c 

For the mid-side node at ( j  - 1)Ax, the corresponding equation is 

By making substitutions of the form of equation ( 5 )  for both node types we obtain a pair of 
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1 . 0  
1 . 6  

$ 1 . 4  

simultaneous equations which yield two eigenvalues. 

(44) 
+,sp - (cos 2y - 3)  - 58( 1 - 8)C2(cos 2y - 1) - 2i( 1 - 28)C sin 2y i- 2iC sin y J( 10 - cos2 y) 

(cos 2 y  - 3)  + 56'2C2(cos 2y - 1) + 4i0C sin 2y 4l"nl - 

where the superscript 'sp' stands for the spurious computational mode that arises because of the 
two different node types. If 8 = 5, then IA:/&pl = 1. Thus the double root for the eigenvalue admits a 
mechanism for the spurious propagation of waves. 

Application of equations (1 6) and (1 7) to equation (44) yields the performance curves for the 
scheme. A particular example is presented in Figure 10 for 8 = 0 6  and C = 1/10 and 10. 
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Figure 10. Stability, amplitude and phase velocity portraits of quadratic finite e1ements:effect of Courant number (@). 
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Examination of Figure 10 shows that the spurious waves are stationary for L= 2Ax and travel 
upstream in the wrong direction up to a rate of five times too fast for very long waves! These 
spurious waves are also considerably damped relative to the continuum wave, even at low Courant 
numbers and with 0=0.6, the scheme’s linear stability is guaranteed. At the higher Courant 
number of 10, it is seen that there is significant (and probably intolerable) damping of the physical 
mode. However, for wavelengths between 70Ax and 3SOAx, the spurious modes are damped to 
about 10 per cent of their initial value (a desirable property) after only one continuum wave period. 

The numerical group velocity ratio ( R )  is found by applying equation (33) to equation (44). The 
calculations are long and are not repeated here (see Reference 6), but the results for the physical and 
spurious computational modes are plotted in Figures 11 and 12, respectively. 

It can be seen that the group velocity portraits are somewhat similar to the phase velocity 
portraits in Figure 10 and that the quadratic finite element scheme models the phase speed better 
than the group velocity (as do linear finite elements). It is also evident that in the physical 
eigenmode, the 2Ax waves have a group velocity that is five times too large and in the wrong 
direction. In the case of the spurious eigenmode however, the 2Ax waves are predicted to behave 
identically with the continuum waves. 

Numerical experiments were also carried out for the quadratic elements at a Courant number of 
1 and for wavelengths of 2Ax, 4Ax (not shown) and SAX. Typical results are shown in Figures 13 
and 14. 

The behaviour of the longer waves, 4Ax and 8Ax, was found to be predicted quite well by the 
group velocity approach. However, the shortest wavelengths (2Ax) exhibited a rather odd 
behaviour. The wave group was found to move forward in the same manner as predicted by the 
spurious eigenmode whereas the physical mode was predicted to move backwards at five times the 
wave speed. In addition, the wave packet was found to oscillate about mean water level between 
odd and even time levels, see Figure 13. Additional experiments with different initial conditions 
were also performed6 but did not succeed in activating the physical eigenmode. 

Other numerical schemes 

In view of the general agreement found between the behaviour of the numerical experiments and 
the group velocity predictions, it was decided to investigate the behaviour of other well known 
finite difference methods and to compare their behaviour with the linear finite element approach as 
applied to equation (3) and also to the second order wave equation 

which results from the combination of equations (1) and (2) after neglecting the non-linear terms. 
Tables I to IV show the results of the group velocity analysis for a selection of the schemes 

investigated. (Further details are contained in Reference 6). 
Figure 15 shows the results of the group velocity analysis at a Courant number equal to 3 applied 

to two implicit numerical schemes (Crank-Nicolson finite difference and linear finite elements) and 
two explicit schemes (leap-frog finite difference and linear finite elements). It is interesting that for 
the two finite element schemes, the group velocity is zero or negative for wavelengths less than 3Ax 
but for the finite difference schemes, the corresponding wavelength is 4Ax. Also, the finite element 
schemes perform worse as far as group velocity is concerned, for those wavelengths between 2Ax 
and about 2.75Ax, but are better for all wavelengths greater than about 2.7SAx. 

Finally in Figure 16, the group velocity performance curves are presented for two numerical 
schemes contained in Table IV at a Courant number equal to 4 applied to the second order wave 
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Figure 13. Time evolution of a wave packet made up of waves of wavelength L= 2Ax 
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Figure 14. Time evolution of a wave packet made up  of waves of wavelength L= 8Ax 
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Table I. Numerical/theoreticaI group velocity ( R )  for various finite difference schemes when applied to du/c?t 
+ c(au/dx) = 0 C = Courant number and y = aAx 

NUMERICAL SCHEME 

Backward Differences 

(J-1 b X  JA X 

Lox-Friedrichs Finite Difference 

Lox-Wendroff Finite Difference 

DISCRETE EOUATIDNS EIGENVALUE I h l ,  Ihl NUMERICAL GROLP VELOCITY 
MEORtTIC4L GROW KLOUTY i F  

I l - E l c o s l X ~  + c 
~I.ICOSX-III~+ ICSI~VI' 

R =  

Table 11. Numerical/theoreticai group velocity (R)  for various leap-frog schemes when applied to au/& 
+ c(au/dx) = 0 C = Courant number y = crAx 

NUMERICAL SCHEME 

Leap-Fro~(2nd order) 
Finite Difference 
- 

Leap-Frog Linear 
Finite Elements 
_ _ _ -  

- Leap-Froal l th order1 
Finite Difference 

DISCRETE EOUATIONS 1 EIGENVALUE I A), Ihl 

A =  ? j l - E ' - * E  

- 
TABILITY 
ONDITIOt 
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Table 111. Numerical/theoretical group velocity (R)  for various finite difference and finite element schemes 
when applied to &/at + c(du/ax) = 0 C = Courant number and y = aAx 

equation. The region of interest is contained in the 2Ax to about 1OAx wavelength range. It is seen 
that the finite elements propagate the wave group too rapidly whereas the finite difference scheme 
propagates them too slowly, but that both schemes propagate the energy in the correct direction 
for all wavelengths except for the stationary wave packets consisting of 2Ax waves. It is interesting 
to note that it was the better damping and phase propagation characteristics that lead Lynch 
and Gray7 to base their water circulation model on the second order wave equation, rahter 
than the shallow water equations. 

Table TV. Numerical/theoretical group velocity (R)  for the finite difference and finite element schemes when 
amlied to a2u/dt2 - c2(a2u/ax21 = 0: 6: = Courant number and Y = crAx 
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CONCLUSIONS 

The group velocity portrait (equations (33) or (34)) of a numerical scheme supplements the well 
known wave amplitude and phase velocity portraits used by analysts to assess the accuracy of a 
numerical scheme. It also provides some understanding as to what may otherwise appear as 
puzzling behaviour for a numerical scheme-especially with regard to the disappearance or 
appearance of short wavelength oscillations and their sometimes rapid, apparent propagation 
counter to that occurring in the continuum. In the case of the linear finite elements discussed in this 
paper, this happens where the analysis predicts a zero phase velocity-i.e. stationary waves. 

Group velocity portraits were calculated for linear and quadratic elements used in conjunction 
with Crank-Nicolson finite differencing in time. The results showed that the group velocity 
representation in these numerical schemes was worse than the phase velocity and that energy 
propagation associated with the short wavelengths was particularly bad, being 3 times (for linear 
elements) or even 5 times (for quadratic elements) too fast in the wrong (i.e. upstream) direction. 

The superiority of the quadratic element over the linear element, as a transporter of energy, may 
be real over all wavelengths, in spite of the results of the group velocity portraits (Figures 1 1  and 
12). This is due to the existence of a computational mode (Figure 12) for the quadratic elements, 
which has perfect energy propagation for 2Ax wavelengths and a better performance than the 
physical eigenmode for wavelengths up to 4Ax. The numerical experiments conducted did not 
succeed in activating the worse behaved physical eigenmode for wavelengths between 2Ax and 
4Ax, in spite of varied initial conditions. Thus it may be that the quadratic elements’ performance 
succeeds in getting the best of both worlds. (i.e. the best of the physical and computational 
eigenmodes). 

By examining the group velocity portraits for a diversity of numerical schemes, the results 
reinforce the fact that it is not sufficient to assess a numerical scheme by only inspecting the 
truncation error. 

In numerical schemes that are free of amplitude errors ( P  = l), it is possible to have perfect 
reproduction of the group velocity only under special conditions, such as Courant no. = 1.  

The behaviour of the group velocity of a numerical scheme has important implications for wave 
modelling within the wave period using the Boussinesq equations, as described by Abbott et aL8, in 
contrast to modelling waves using a time-averaged approach via radiation stresses. The present 
results suggest that a good spatial resolution is even more vital if the Boussinesq approach is to be 
used as the basis of future models. 
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